Kinematics & Dynamics of Linkages Lecture 11 – Analytical Linkage Synthesis

Spring 2018

Algebraic analysis

MEE341 – Lecture 11: Analytical Linkage Synthesis

Slide 2 of 26 🛛 🔍 LAU

Vector Loop Approach

 $R_2 + R_3 - R_4 - R_1 = 0$

MEE341 – Lecture 11: Analytical Linkage Synthesis

Slide 3 of 26 🔝 LAU

Equations

 $R_2 + R_3 - R_4 - R_1 = 0$

Real part a $\cos \Theta_2 + b \cos \Theta_3 - c \cos \Theta_4 - d = 0$

Imaginary part a $\sin \Theta_2 + b \sin \Theta_3 - c \sin \Theta_4 = 0$

Goal is to find

 $\Theta_3 = f(a,b,c,d,\Theta_2)$ $\Theta_4 = g(a,b,c,d,\Theta_2)$

Isolate θ_3

 $b \cos \Theta_3 = -a \cos \Theta_2 + c \cos \Theta_4 + d$ $b \sin \Theta_3 = -a \sin \Theta_2 + c \sin \Theta_4$

Square both sides

 $(b \cos \Theta_3)^2 = (-a \cos \Theta_2 + c \cos \Theta_4 + d)^2$ $(b \sin \Theta_3)^2 = (-a \sin \Theta_2 + c \sin \Theta_4)^2$

Add the 2 expressions

 $b^2 \left(\cos^2 \Theta_3 + \sin^2 \Theta_3\right) = (- a \cos \Theta_2 + c \cos \Theta_4 + d)^2 + (- a \sin \Theta_2 + c \sin \Theta_4)^2$

So this yields (using $\cos^2\Theta_3 + \sin^2\Theta_3 = 1$) $b^2 = (- a \cos\Theta_2 + c \cos\Theta_4 + d)^2 + (-a \sin\Theta_2 + c \sin\Theta_4)^2$

Multiply & combine like terms $b^2 = a^2 + c^2 + d^2 - 2ad \cos\theta_2 + cd \cos\theta_4 - 2ac \cos(\theta_2 - \theta_4)$

Divide both sides by 2ac

 $-(-b^{2}+a^{2}+c^{2}+d^{2})/2ac + (d/c)\cos\theta_{2} - (d/a)\cos\theta_{4} = -\cos(\theta_{2} - \theta_{4})$

To simplify, define $k_1 = (d/a)$ $k_2 = (d/c)$ $k_3 = (a^2 - b^2 + c^2 + d^2)/2ac$

Yields Freudenstein's equation

 $\mathbf{k}_{1}\mathbf{\cos}\theta_{4} - \mathbf{k}_{2}\mathbf{\cos}\theta_{2} + \mathbf{k}_{3} = \mathbf{\cos}(\theta_{2} - \theta_{4}) = \mathbf{\cos}\theta_{2}\mathbf{\cos}\theta_{4} + \mathbf{\sin}\theta_{2}\mathbf{\sin}\theta_{4}$

Yields Freudenstein's equation

 $k_1 cos \Theta_4 - k_2 cos \Theta_2 + k_3 = cos \Theta_2 cos \Theta_4 + sin \Theta_2 sin \Theta_4$

From Trigonometric relations:

 $\sin\Theta_4 = (2\tan(\Theta_4/2))/(1 + \tan^2(\Theta_4/2))$ $\cos\Theta_4 = (1 - \tan^2(\Theta_4/2))/(1 + \tan^2(\Theta_4/2))$

Substituting A $\tan^2(\Theta_4/2) + B \tan(\Theta_4/2) + C = D$

where

$$A = \cos \Theta_2 - k_1 - k_2 \cos \Theta_2 + k_3$$

$$B = -2\sin \Theta_2$$

$$C = k_1 - (k_2 + 1)\cos \Theta_2 + k_3$$

Solution of A $\tan^2(\Theta_4/2) + B \tan(\Theta_4/2) + C = D$

We have **2 solutions** because we have 2 possible linkage configurations (**Open** and **Crossed**)

Solving for θ_3 :

Driginal loop equations a $\cos \Theta_2 + b \cos \Theta_3 - c \cos \Theta_4 - d = 0$ a $\sin \Theta_2 + b \sin \Theta_3 - c \sin \Theta_4 = 0$

Isolate Θ_4 c cos Θ_4 = a cos Θ_2 + b cos Θ_3 - d c sin Θ_4 = a sin Θ_2 + b sin Θ_3

Square both sides and add the equations to eliminate Θ_4 $k_1 \cos \Theta_3 - k_4 \cos \Theta_2 + k_5 = \cos(\Theta_2 - \Theta_3) = \cos \Theta_2 \cos \Theta_3 + \sin \Theta_2 \sin \Theta_3$

Where

$$\begin{array}{l} k_1 = (d/a) \\ k_4 = (d/b) \\ k_5 = (c^2 - d^2 - a^2 - b^2)/2ab \end{array}$$

Similarly, we may derive a quadratic equation for tan ($\Theta_3/2$)

 $D \tan^2(\Theta_3/2) + E \tan(\Theta_3/2) + F = D$

Where

$$D = \cos \Theta_2 - k_1 + k_4 \cos \Theta_2 + k_5$$

$$E = -2\sin \Theta_2$$

$$F = k_1 + (k_4 - 1)\cos \Theta_2 + k_5$$

$$k_1 = (d/a)$$

$$k_4 = (d/b)$$

$$k_5 = (c^2 - d^2 - a^2 - b^2)/2ab$$

The solution to the quadratic is

Again, **2 solutions** for open & crossed linkages

Example

- Link 1 = 8" Link 3 = 8"
- Link 2 = 5" Link 4 = 6"
- θ2 = 75°

• Calculate O3 & O4 ??

Example - Solution

To determine $\Theta_3 \ \ \Theta_4$ first calculate the constants

 $k_1 = (d/a) = 1.6$ $k_2 = (d/c) = 1.333$ $k_3 = (a^2 - b^2 + c^2 + d^2)/2ac = 1.017$ $k_4 = (d/b) = 1.0$ $k_5 = (c^2 - d^2 - a^2 - b^2)/2ab = -1.463$ $A = cos\Theta_2 - k_1 - k_2 cos\Theta_2 + k_3 = -0.669$ $B = -2\sin\theta_2 = -1.932$ $C = k_1 - (k_2 + 1)cos\Theta_2 + k_3 = 2.013$ $D = cos\Theta_2 - k_1 + k_4 cos\Theta_2 + k_5 = -2.545$ $E = -2\sin\theta_2 = -1.932$ $F = k_1 + (k_4 - 1)\cos\Theta_7 + k_5 = 0.137$

a = length of link 2
b = length of link 3
c = length of link 4
d = length of link 1

Example - Solution

The solution of ${f heta}_4$:

$$\theta_4 = 2 \tan^{-1} \left(\frac{-B \pm \sqrt{(B^2 - 4AC)}}{2A} \right) = 78.2^\circ \text{ or } -149.7^\circ$$

The solution of $\boldsymbol{\theta}_4$:

$$\theta_3 = 2 \tan^{-1} \left(\frac{-E \pm \sqrt{(E^2 - 4DF)}}{2D} \right) = 7.5^{\circ} \text{ or } -79.0^{\circ}$$

Slide 14 of 26 LAU

Slider-Cranks

Vector Loop Approach Given:

- Lengths of links 2 & 3
- Offset height
- Input angle Θ_2

Find:

- Length of link 1
- Angle Θ_3

Slide 15 of 26

Slider-Cranks

Vector loop equation

$$R_2 - R_3 - R_4 - R_1 = 0$$

Projections: (x and y axis) a $\cos \Theta_2 - b \cos \Theta_3 - c \cos \Theta_4 - d = 0$ a $\sin \Theta_2 - b \sin \Theta_3 - c \sin \Theta_4 = 0$

Where

a, b and c are known Θ_2 is given $\Theta_4 = 90^\circ$

Solution

 $\mathbf{d} = \mathbf{a} \cos \Theta_2 - \mathbf{b} \cos \Theta_3$

Slider-Cranks

Solve for Θ_3 using the equation (projection on y axis) a $\sin \Theta_2 - b \sin \Theta_3 - c \sin \Theta_4 = 0$

Solution (± 90° of sin-1)

1st configuration

$$\theta_{3_1} = \sin^{-1} \left(\frac{a \sin \theta_2 - c}{b} \right)$$

$$2^{nd} \text{ configuration}$$

$$\theta_{3_2} = \sin^{-1} \left(-\frac{a \sin \theta_2 - c}{b} \right) + \pi$$

$$\mathbf{d} = a \cos \theta_7 - b \cos \theta_3$$

Slide 17 of 26

- Sliding joint between links 3 & 4 at point B
- γ does not have to be 90°
- All slider-cranks will have at least one link whose effective length between joints will vary as the linkage moves

- Vector Loop Approach
- Length of link 3 (b) changes with time
 - b is unknown
 - Θ_4 is unknown
 - Θ_3 is unknown
- Relationship between Θ_3 and Θ_4

 $\Theta_3 = \Theta_4 + \gamma$

- + for an open linkage
- for a crossed linkage

Vector loop equation: $R_2 - R_3 - R_4 - R_1 = 0$

Original loop equations

- $a \cos \Theta_2 b \cos \Theta_3 c \cos \Theta_4 d = 0$
- $a \sin \Theta_2 b \sin \Theta_3 c \sin \Theta_4 = 0$

Where a, d and c are known, Θ_2 is given, Θ_4 , Θ_3 and b to be calculated

Use the second equation to solve for b

 $b = (a \sin \theta_2 - c \sin \theta_4) / \sin \theta_3$

Substituting into the first equation

 $a \cos \Theta_2 - ((a \sin \Theta_2 - c \sin \Theta_4) / \sin \Theta_3) \cos \Theta_3 - c \cos \Theta_4 - d = 0$

Rearrange equation

 $a \cos \Theta_2 - ((a \sin \Theta_2 - c \sin \Theta_4) / \sin \Theta_3) \cos \Theta_3 - c \cos \Theta_4 - d = 0$

Using: $\theta_3 = \theta_4 \pm \gamma$

Yields:
$$P \sin \theta_4 + Q \cos \theta_4 + R = 0$$

Where
$$P = a \sin \Theta_2 \sin \gamma + (a \cos \Theta_2 - d) \cos \gamma$$

 $Q = -a \sin \Theta_2 \cos \gamma + (a \cos \Theta_2 - d) \sin \gamma$
 $R = -c \sin \gamma$

Using half angles:

$$P \sin \Theta_4 + Q \cos \Theta_4 + R = 0$$

(R - Q) tan² (\Omega_4/2) + 2P tan(\Omega_4/2) + (Q + R) = 0

Let
$$S = R - Q$$

 $T = 2P$
 $U = Q + R$

Solution

 Θ_4 = 2arctan ((– T \pm (T² – 4SU).⁵)/2S) This has both **open** & **crossed** solutions

Having Θ_4 solve for Θ_3 and b

Dpen configuration $\Theta_3 = \Theta_4 + \gamma$ $b = (a \sin \Theta_2 - c \sin \Theta_4) / \sin \Theta_3$

Crossed configuration $\Theta_3 = \Theta_4 - \gamma$ $b = (a \sin \Theta_2 - c \sin \Theta_4) / \sin \Theta_3$

Example – Slider Crank

Given:

- Link 2 = 1.4"
- Link 3 = 4"
- Offset = 1"
- $\Theta_2 = 45^\circ$

Find: θ₃ & d

Example – Slider Crank Solution

Use formulas derived before
1st configuration (crossed)

$$\theta_{3_1} = \sin^{-1} \left(\frac{a \sin \theta_2 - c}{b} \right) = -0.14^0$$

 $d = a \cos \theta_2 - b \cos \theta_3 = -3.01 in$

2nd configuration (open) $\theta_{3_2} = \sin^{-1} \left(-\frac{a \sin \theta_2 - c}{b} \right) + \pi = 180.14^0$ $d = a \cos \theta_2 - b \cos \theta_3 = 4.99 \text{ in}$

a = length of link 2
b = length of link 3
c = length of link 4
d = length of link 1

MEE341 – Lecture 11: Analytical Linkage Synthesis

Slide 25 of 26 🔝 LAU

Solution

MEE341 – Lecture 11: Analytical Linkage Synthesis

Slide 26 of 26 🔝 LAU