Kinematics C Dynamics of Linkages $^{\text {a }}$ Lecture 1 I - Analytical Linkage Synthesis

Algebraic analysis

Polar form:

$$
\left|\mathbf{R}_{A}\right| \varrho<\theta
$$

Cartesian form:
$R \cos \theta \hat{\mathbf{i}}, R \sin \theta \hat{\mathbf{j}}$

Polar form: R $e^{\frac{j \theta}{i \theta}}$
Cartesian form: $R \cos \theta+J R \sin \theta$

$$
R=\left|\mathbf{R}_{A}\right|
$$

Vector Loap Approach

$R_{2}+R_{3}-R_{4}-R_{1}=\square$

Equations

$$
R_{2}+R_{3}-R_{4}-R_{1}=0
$$

Real part
$a \cos \theta_{2}+b \cos \theta_{3}-c \cos \theta_{4}-d=0$
Imaginary part
$a \sin \theta_{2}+b \sin \theta_{3}-c \sin \theta_{4}=\square$
Goal is to find
$\theta_{3}=f\left(\right.$ a,b.c., d, $\left.\theta_{2}\right)$
$\theta_{4}=g\left(\right.$ a,b,c, d, $\left.\theta_{2}\right)$

4Bar Solution Derivation

Isolate θ_{3}
$\mathrm{b} \cos \theta_{3}=-\mathrm{a} \cos \theta_{2}+c \cos \theta_{4}+d \quad b \sin \theta_{3}=-a \sin \theta_{2}+c \sin \theta_{4}$

Square bath sides

$\left(b \cos \theta_{3}\right)^{2}=\left(-a \cos \theta_{2}+c \cos \theta_{4}+d\right)^{2}\left(b \sin \theta_{3}\right)^{2}=\left(-a \sin \theta_{2}+c \sin \theta_{4}\right)^{2}$

Add the 2 expressions
$\mathrm{b}^{2}\left(\cos ^{2} \theta_{3}+\sin ^{2} \theta_{3}\right)=\left(-a \cos \theta_{2}+c \cos \theta_{4}+d\right)^{2}+\left(-a \sin \theta_{2}+c \sin \theta_{4}\right)^{2}$
So this yields (using $\cos ^{2} \theta_{3}+\sin ^{2} \theta_{3}=1$)
$\mathrm{b}^{2}=\left(-\mathrm{a} \cos \theta_{2}+\mathrm{c} \cos \theta_{4}+d\right)^{2}+\left(-a \sin \theta_{2}+c \sin \theta_{4}\right)^{2}$

4Bar Solutian Derivatian

Multiply \& combine like terms

$$
b^{2}=a^{2}+c^{2}+d^{2}-2 a d \cos \theta_{2}+c d \cos \theta_{4}-2 a c \cos \left(\theta_{2}-\theta_{4}\right)
$$

Divide both sides by 2ac
$-\left(-b^{2}+a^{2}+c^{2}+d^{2}\right) / 2 a c+(d / c) \cos \theta_{2}-(d / a) \cos \theta_{4}=-\cos \left(\theta_{2}-\theta_{4}\right)$
To simplify, define

$$
\begin{aligned}
& \mathrm{k}_{1}=(\mathrm{d} / \mathrm{a}) \\
& \mathrm{k}_{2}=(\mathrm{d} / \mathrm{c}) \\
& \mathrm{k}_{3}=\left(\mathrm{a}^{2}-\mathrm{b}^{2}+\mathrm{c}^{2}+\mathrm{d}^{2}\right) / 2 \mathrm{ac}
\end{aligned}
$$

Yields Freudenstein's equation
$\mathrm{k}_{1} \cos \theta_{4}-\mathrm{k}_{2} \cos \theta_{2}+\mathrm{k}_{3}=\cos \left(\theta_{2}-\theta_{4}\right)=\cos \theta_{2} \cos \theta_{4}+\sin \theta_{2} \sin \theta_{4}$

4Bar Solution Derivation

Yields Freudenstein's equation
$k_{1} \cos \theta_{4}-k_{2} \cos \theta_{2}+k_{3}=\cos \theta_{2} \cos \theta_{4}+\sin \theta_{2} \sin \theta_{4}$
From Trigonometric relations:
$\sin \theta_{4}=\left(2 \tan \left(\theta_{4} / 2\right)\right) /\left(1+\tan ^{2}\left(\theta_{4} / 2\right)\right)$
$\cos \theta_{4}=\left(1-\tan ^{2}\left(\theta_{4} / 2\right)\right) /\left(1+\tan ^{2}\left(\theta_{4} / 2\right)\right)$

Substituting $\quad A \tan ^{2}\left(\theta_{4} / 2\right)+B \tan \left(\theta_{4} / 2\right)+C=\square$
where

$$
\begin{aligned}
& A=\cos \theta_{2}-k_{1}-k_{2} \cos \theta_{2}+k_{3} \\
& B=-2 \sin \theta_{2} \\
& C=k_{1}-\left(k_{2}+1\right) \cos \theta_{2}+k_{3}
\end{aligned}
$$

4Bar Solution Derivation

Solution of $\quad A \tan ^{2}\left(\theta_{4} / 2\right)+B \tan \left(\theta_{4} / 2\right)+C=\square$
$\tan \left(\frac{\theta_{4}}{2}\right)=\frac{-B \pm \sqrt{\left(B^{2}-4 A C\right)}}{2 A}$
$\theta_{4}=2 \tan ^{-1}\left(\frac{-B \pm \sqrt{\left(B^{2}-4 A C\right)}}{2 A}\right)$

We have 2 solutions because we have 2 passible linkage configurations (Dpen and Crossed)

4Bar Solution Derivation

Solving far θ_{3} :

Driginal loap equations

$a \cos \theta_{2}+b \cos \theta_{3}-c \cos \theta_{4}-d=\left[\quad a \sin \theta_{2}+b \sin \theta_{3}-c \sin \theta_{4}=[\right.$
Isolate $\boldsymbol{\theta}_{4}$
c $\cos \theta_{4}=a \cos \theta_{2}+b \cos \theta_{3}-d \quad c \sin \theta_{4}=a \sin \theta_{2}+b \sin \theta_{3}$
Square both sides and add the equations to eliminate $\boldsymbol{\theta}_{4}$ $k_{1} \cos \theta_{3}-k_{4} \cos \theta_{2}+k_{5}=\cos \left(\theta_{2}-\theta_{3}\right)=\cos \theta_{2} \cos \theta_{3}+\sin \theta_{2} \sin \theta_{3}$

Where

$$
\begin{aligned}
& k_{1}=(d / a) \\
& k_{4}=(d / b) \\
& k_{5}=\left(c^{2}-d^{2}-a^{2}-b^{2}\right) / 2 a b
\end{aligned}
$$

4Bar Solution Derivation

Similarly, we may derive a quadratic equation far $\tan \left(\theta_{3} / Z\right)$

$$
\mathrm{D} \tan ^{2}\left(\theta_{3} / 2\right)+\mathrm{E} \tan \left(\theta_{3} / 2\right)+\mathrm{F}=\mathrm{D}
$$

Where

$$
\begin{aligned}
& D=\cos \theta_{2}-k_{1}+k_{4} \cos \theta_{2}+k_{5} \\
& E=-2 \sin \theta_{2} \\
& F=k_{1}+\left(k_{4}-l\right) \cos \theta_{2}+k_{5} \\
& k_{1}=(d / a) \\
& k_{4}=(d / b) \\
& k_{5}=\left(c^{2}-d^{2}-a^{2}-b^{2}\right) / 2 a b
\end{aligned}
$$

4Bar Solutian Derivatian

The solution to the quadratic is
$\tan \left(\frac{\theta_{3}}{2}\right)=\frac{-E \pm \sqrt{\left(E^{2}-4 D F\right)}}{2 D}$
$\theta_{3}=2 \tan ^{-1}\left(\frac{-E \pm \sqrt{\left(E^{2}-4 D F\right)}}{2 D}\right)$

Again, 2 solutions for open 8 crassed linkages

Example

- Link $1=8{ }^{\prime \prime}$
- Link 2 = 5"
- $\theta 2=75^{\circ}$
- Calculate $\theta 3$ \& $\theta 4$??

Link $3=8 "$
Link $4=6$ "

Example - Solution

To determine $\boldsymbol{\theta}_{3}$ \& $\boldsymbol{\theta}_{4}$ first calculate the constants

$k_{1}=(d / a)=1.6$
$\mathrm{k}_{2}=(\mathrm{d} / \mathrm{c})=1.333$
$k_{3}=\left(a^{2}-b^{2}+c^{2}+d^{2}\right) / 2 a c=1.017$
$\mathrm{k}_{4}=(\mathrm{d} / \mathrm{b})=1 . \mathrm{D}$
$k_{5}=\left(c^{2}-d^{2}-a^{2}-b^{2}\right) / 2 a b=-1.463$
$A=\cos \theta_{2}-k_{1}-k_{2} \cos \theta_{2}+k_{3}=-0.654$
$B=-2 \sin \theta_{2}=-1.932$
$\Gamma=k_{1}-\left(k_{2}+1\right) \cos \theta_{2}+k_{3}=2.013$
$D=\cos \theta_{2}-k_{1}+k_{4} \cos \theta_{2}+k_{5}=-2.545$
$\mathrm{E}=-2 \sin \theta_{2}=-1.932$
$F=k_{1}+\left(k_{4}-I\right) \cos \theta_{2}+k_{5}=0.137$

Example - Solution

The solution of $\boldsymbol{\theta}_{4}$:

$$
\theta_{4}=2 \tan ^{-1}\left(\frac{-B \pm \sqrt{\left(B^{2}-4 A C\right)}}{2 A}\right)=78.2^{\circ} \text { or }-149.7^{\circ}
$$

The solution of $\boldsymbol{\theta}_{\mathbf{4}}$:

$$
\theta_{3}=2 \tan ^{-1}\left(\frac{-E \pm \sqrt{\left(E^{2}-4 D F\right)}}{2 D}\right)=7.5^{\circ} \text { or }-79.0^{\circ}
$$

Slider-Cranks

Vector Loap Approach

Given:

- Lengths of links 2 \& 3
- Dffset height
- Input angle θ_{2}

Find:

- Length of link I
- Angle θ_{3}

Slider-Cranks

Vector loap equation

$$
R_{2}-R_{3}-R_{4}-R_{1}=0
$$

Projectians: (x and y axis)
$a \cos \theta_{2}-b \cos \theta_{3}-c \cos \theta_{4}-d=0$
$a \sin \theta_{2}-b \sin \theta_{3}-c \sin \theta_{4}=0$

Where

a, b and care known
θ_{2} is given
$\theta_{4}=90^{\circ}$

Solution

$\mathrm{d}=\mathrm{a} \cos \theta_{2}-\mathrm{b} \cos \theta_{3}$

MEE34l - Lecture II: Analytical Linkage Synthesis
Silde fif of 2 D LAU

Slider-Cranks

Solve for θ_{3} using the equation (projection on y axis) $a \sin \theta_{2}-b \sin \theta_{3}-c \sin \theta_{4}=\square$

${ }^{\text {st }}$ configuration
$\theta_{3_{1}}=\sin ^{-1}\left(\frac{a \sin \theta_{2}-c}{b}\right)$
2 ${ }^{\text {nd }}$ configuration
$\theta_{3_{2}}=\sin ^{-1}\left(-\frac{a \sin \theta_{2}-c}{b}\right)+\pi$
$d=a \cos \theta_{2}-b \cos \theta_{3}$

MEE341 - Lecture II: Analytical Linkage Synthesis
Slide 17 of 26 LIAU

Inverted Slider-Cranks

- Sliding joint between links 3 \& 4 at point B
- γ daes not have ta be 90^{0}
- All slider-cranks will have at least one link whose effective length between joints will vary as the linkage maves

Inverted Slider-Cranks

- Vector Loap Approach
- Length of link 3 (b) changes with time
- b is unknown
- θ_{4} is unknown
- θ_{3} is unknown
- Relationship between θ_{3} and θ_{4}

$$
\theta_{3}=\theta_{4}+\gamma
$$

+ for an open linkage
- for a crassed linkzage

MEE341 - Lecture II: Analytical Linkage Synthesis
Silidet of if SLAU

Inverted Slider-Cranks

Vector loap equation: $R_{2}-R_{3}-R_{4}-R_{1}=0$

Driginal loap equations

$\mathrm{a} \cos \theta_{2}-\mathrm{b} \cos \theta_{3}-\mathrm{c} \cos \theta_{4}-\mathrm{d}=\mathrm{D}$
$a \sin \theta_{2}-b \sin \theta_{3}-c \sin \theta_{4}=\square$
Where a, d and c are known, θ_{2} is given, $\theta_{4} \theta_{3}$ and b to be calculated
Use the second equation to solve for b
$b=\left(a \sin \theta_{2}-c \sin \theta_{4}\right) / \sin \theta_{3}$
Substituting into the first equation
$a \cos \theta_{2}-\left(\left(a \sin \theta_{2}-c \sin \theta_{4}\right) / \sin \theta_{3}\right) \cos \theta_{3}-c \cos \theta_{4}-d=\square$

Inverted Slider-Cranks

Rearrange equation

a $\cos \theta_{2}-\left(\left(a \sin \theta_{2}-c \sin \theta_{4}\right) / \sin \theta_{3}\right) \cos \theta_{3}-c \cos \theta_{4}-d=0$
Using: $\quad \theta_{3}=\theta_{4} \pm \gamma$
Yields: $\quad P \sin \theta_{4}+\square \cos \theta_{4}+R=\square$

Where $P=a \sin \theta_{2} \sin \gamma+\left(a \cos \theta_{2}-d\right) \cos \boldsymbol{\gamma}$

$$
\begin{aligned}
& \square=-a \sin \theta_{2} \cos \boldsymbol{\gamma}+\left(a \cos \theta_{2}-d\right) \sin \boldsymbol{\gamma} \\
& R=-c \sin \boldsymbol{\gamma}
\end{aligned}
$$

MEE341 - Lecture II: Analytical Linkage Synthesis
Slide 21 of 26 LIAU

Inverted Slider-Cranks

Using half angles:

$$
\begin{aligned}
& P \sin \theta_{4}+\square \cos \theta_{4}+R=\square \\
& (R-\mathbb{Q}) \tan ^{2}\left(\theta_{4} / 2\right)+2 P \tan \left(\theta_{4} / 2\right)+(\square+R)=\square
\end{aligned}
$$

Let

$$
\begin{aligned}
& S=R-\square \\
& T=2 P \\
& U=\square+R
\end{aligned}
$$

Solutian
$\theta_{4}=\operatorname{Zarctan}\left(\left(-T \pm\left(T^{2}-4 S U\right)^{5}\right) / 2 S\right)$
This has bath apen \& crossed solutions

MEE341 - Lecture II: Analytical Linkage Synthesis

Inverted Slider-Cranks

Having θ_{4} solve for θ_{3} and b
Dpen configuration
$\theta_{3}=\theta_{4}+\gamma$
$b=\left(a \sin \theta_{2}-c \sin \theta_{4}\right) / \sin \theta_{3}$
Crossed configuration
$\theta_{3}=\theta_{4}-\gamma$
$b=\left(a \sin \theta_{2}-c \sin \theta_{4}\right) / \sin \theta_{3}$

MEE341 - Lecture II: Analytical Linkage Synthesis
Silide 23 of 2 B LAU

Example - Slider Crank

Given:

- Limk $2=1.4^{\prime \prime}$
- $\operatorname{Link} 3=4$ "
- Dffset = I'
- $\theta_{2}=45^{\circ}$

Find: θ_{3} \& d

Example - Slider Crank Solutian

Use formulas derived before Ist configuration (crossed)
$\theta_{3_{1}}=\sin ^{-1}\left(\frac{a \sin \theta_{2}-c}{b}\right)=-0.14^{0}$
$d=a \cos \theta_{2}-b \cos \theta_{3}=-3.01$ in

2nd configuration (open)

$\theta_{3_{2}}=\sin ^{-1}\left(-\frac{a \sin \theta_{2}-c}{b}\right)+\pi=180.14^{0}$
$d=a \cos \theta_{2}-b \cos \theta_{3}=4.99$ in
$\boldsymbol{a}=$ length of link 2
$\boldsymbol{b}=$ length of link 3
$\boldsymbol{c}=$ length of link 4
d = length of link /

Solution

MEE34I - Lecture II: Analytical Linkage Synthesis
Slide 2B of 26 LAU

